Pressure Detection
Some touch screens currently do offer pressure sensitive technology. However, these features are not very accurate due to the fact that they measure pressure by surface area (i.e. as you push hard, more of your finger covers the screen.) This is not a true indication of pressure, but there technologies on the horizon that may soon solve that. Using force sensing resistors and piezoelectric actuators behind a LCD touch screen, companies like Sony are testing devices that measure the amount of pressure exerted on a specific location on the screen.
Using different amounts of pressure to manipulate the screen would not only require less buttons, but allow for more features on every screen. On a computer or e-reader for example, this technology would allow a user to scroll faster or slower depending on the firmness of his or her touch. On a music player, one could browse through songs at their own pace based on pressure.
Hover Awareness
Perhaps an extension of the pressure sensitive touch screen is the fact that eventually, you may not even have to make contact with a touch screen to get a reaction. Mitsubishi and Cypress are among the technology experts who have unveiled ‘hover detection’ demos. These screens can not only react when the panel is touched, but can also detect when a finger is near the surface. This so called “mouse-over” function will make touch screen technology seem almost magical.
It would also increase usability. Certainly there would be a time and place for this function, as you wouldn’t want it reacting to you simply because you happen to be near the screen. But much like a mouse arrow hovering over an icon, holding your finger over a link could open up a pop-up or small preview of that page. If you wanted to enter that link, then you could simply move your finger down slightly and press the screen.
Touch Sensitivity
Perhaps the biggest disadvantage of a touch screen is that the user has to look at what they are pushing in order to be accurate. This is the reason some people prefer a regular keyboard over a touch screen. The grooves of the keyboard allow the user to feel where their hand or fingers are without taking a glance down.
But touch screens may soon be able to do the same. Tactile feedback may soon help users feel where they are on the screen, allowing them to maneuver without even looking at the screen. For example, as you glide over the screen, some buttons may feel smooth while others give a rough sensation. Using pulses of electric current on the surface, Toshiba and others already have this type of solution in the works.
By differentiating the feel of icons, users would be able to find the appropriate button by using only their sense of touch. The technology can even be transferred to the keyboard, where rough sensations could divide each key from another. Beyond regular usability, offering feedback by touch would allow the visually impaired to use these gadgets more easily. It’s not a far stretch from Braille technology, just transferred to the new generation of consumer electronics.
This was some good information; sounds similar to what this touch screen stuff does? http://www.ssidisplays.com/products/touch-screens/thru-glass